

Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt : / /	JEE Main (Archive)	Exact Duration :		

1.	For the reaction,	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ the equilibrium constant K_p changes with:	(1981)

- (A) total pressure
- (B) catalyst
- (C) the amount of H_2 and I_2 present
- (D) temperature
- **2.** Pure ammonia is placed in a vessel at a temperature where its dissociation constant (α) is appreciable.

At equilibrium,
$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(1984)

- (A) K_p does not change significantly with pressure
- **(B)** α does not change with pressure
- (C) concentration of NH₃ does not change with pressure
- (D) concentration of hydrogen is less than that of nitrogen
- 3. One mole of N_2 and 3 moles of PCl_5 are placed in a 100L vessel heated to $227^{\circ}C$. The equilibrium pressure is 2.05 atm. Assuming ideal behaviour, calculate the degree of dissociation for PCl_5 and Kp for

the reaction.
$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

(1984)


4. An example of a reversible reaction is:

(1985)

- (A) $\operatorname{Pb}(\operatorname{NO}_3)_2(\operatorname{aq}) + 2\operatorname{NaI}(\operatorname{aq}) \to \operatorname{PbI}_2(\operatorname{s}) + 2\operatorname{NaNO}_3(\operatorname{aq})$
- **(B)** $\operatorname{AgNO}_3(\operatorname{aq}) + \operatorname{HCl}(\operatorname{aq}) \to \operatorname{AgCl}(\operatorname{s}) + \operatorname{HNO}_3(\operatorname{aq})$
- (C) $2Na(s) + 2H_2O(\ell) \rightarrow 2NaOH(aq) + H_2(g)$
- **(D)** $KNO_3(aq) + NaCl(aq) \rightarrow KCl(aq) + NaNO_3(aq)$
- 5. The equilibrium $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is attained at 25°C in a closed container and an inert gas, helium is introduced. Which of the following statements are correct? (1989)
 - (A) concentration of SO₂,Cl₂ and SO₂Cl₂ change

- **(B)** More chlorine is formed
- (C) concentration of SO_2 is reduced
- **(D)** None of the above
- One mole of $N_2O_4(g)$ at 300 K is kept in a closed container under one atmosphere. It is heated to 600K when 20% by mass of $N_2O_4(g)$ decomposes to $NO_2(g)$. The resultant pressure is: (1996)
 - (A) 1.2 atm
- **(B)** 2.4 atm
- (C) 2.0 atm
- **(D)** 1.0 atm
- **(**
- 7. For the reaction, $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$, at a given temperature, the equilibrium amount of $CO_2(g)$ can be increased by: (1998)
 - **(A)** adding a suitable catalyst
- (B) adding an inert gas
- (C) decreasing the volume of the container (D)
- **(D)** increasing the amount of CO(g)

8.

For the chemical reaction, $3X(g) + Y(g) \rightleftharpoons X_3Y(g)$

VMC	Chemic	al Equilibrium			100			DTS-1 JEE Main	(Archive)
	(C)	1844			(D)	4281			
	(A)	4763			(B)	2068			\odot
	J mol	¹ ; is approximat	ely:(R =	$8.314~\mathrm{JK}^{-1}\mathrm{mol}$	⁻¹ ; ln2 =	0.693; ln3=	= 1.098)		(2018)
14.	At 320	K , a gas A_2 is	20% dis	sociated to A(g). The st	andard free	energy chan	ige at 320 K ar	ıd 1 atm in
	(C)	1.182			(D)	0.182			
	(A)	0.818			(B)	1.818			\odot
	all the	I the four species were 1M each, then equilibrium concentration of D (in $\mathrm{mol}L^{-1}$) will be:						(2016)	
13.	_	uilibrium consta							entration of
	(D)	reverse directio							
	(C)	forward direction							
	(B)	reverse directio							
	(A)	forward direction	on becau	se Q > K _C					\odot
	(R = 8.	314JK / mol, e =	= 2.718)						(2015)
		nposition of the		mixture is [A	$A = \frac{1}{2}, [B]$	$\begin{bmatrix} 3 \end{bmatrix} = 21 $ and $\begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} C \end{bmatrix} = \frac{1}{2}$. The	e reaction proc	eeds in the
12.		ındard Gibbs en		_					_
				_		_			
	(A)	-1	(B)	$-\frac{1}{2}$	(C)	1_	(D)	1	
	then th	e value of x is (a	- ssuming	ideality)				(2014)	
11.	For the	e reaction, SO_2	g) + $\frac{1}{2}O_2$	$(g) \rightleftharpoons SO_3(g)$	g) if K _p =	$= K_C (RT)^x w$	here, the sy	mbol have usua	al meaning,
	(D)	3O ₂ (g) ← 2	2O ₃ (g)						
	(C)	$4NH_3(g) + 5O_2(g)$	(g) 	4NO(g)+6H ₂ 0	J (ℓ)				
					0.40				
	(B)	$H_2(g) + I_2(g) \rightleftharpoons$		2 -					
	(A)	$2NO_2(g) \Longrightarrow$	2NO(g)-	+ O ₂ (g)					(2000)
10.	In which of the following reactions, an increase in the volume of the container will favour the formation products?								ormation of (2008)
	(C)				(D)	increases			
	(A)	is zero is independent	of time		(B)	decreases			
	_	of the reaction:			(-)				(2000)
9. When two reactants, A and B are mixed to give products, C and D, the reaction quotient								quotient, (Q) a	t the initial
	(C)	pressure only			(D)	temperatu	re, pressure	and catalyst	
	(A)	temperature an	_	•	(B)	temperatu	re only		(
	The amount of X₃Y at equilibrium is affected by							(1999)	

15. Consider the following reversible chemical reactions: (2019)

$$A_2(g) + B_2(g) \xrightarrow{K_1} 2AB(g)$$

$$6AB(g) \stackrel{K_2}{\rightleftharpoons} 3A_2(g) + 3B_2(g)$$

The relation between K_1 and K_2 is :

$$K_2 = K_1^{3-}$$
 (B) $K_1 K_2 = \frac{1}{3}$ (C) $K_1 K_2 = 3$ (D) $K_2 = K_1^3$

$$K_1K_2 = 3$$

$$K_2 = K_1^2$$

16. 5.1 g NH₄SH is introduced in 3.0 L evacuated flask at 327°C, 30% of the solid NH₄SH decomposed to \mbox{NH}_3 and $\mbox{H}_2\mbox{S}$ as gases. The $\,\mbox{K}_p$ of the reaction at 327°C is : (2019)

 $(R = 0.082 \text{ L atm mol}^{-1} \text{ K}^{-1}, \text{ Molar mass of } S = 32 \text{ g mol}^{-1}, \text{ molar mass of } N = 14 \text{ g mol}^{-1})$

(A)
$$0.242 \, \text{atm}^2$$

$$4.9 \times 10^{-3}$$
 atm²

 $4.9 \times 10^{-3} \text{ atm}^2$ (C) $0.242 \times 10^{-4} \text{ atm}^2$

(D) $1 \times 10^{-4} \text{ atm}^2$

17. Consider the reaction
$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

(2019)

The equilibrium constant of the above reaction is K_p . If pure ammonia is left to dissociated, the partial pressure of ammonia at equilibrium is given by : (Assume that $P_{NH_3} << P_{total}$ at equilibrium)

(A)
$$\frac{3^{3/2}K_p^{1/2}}{16}$$

$$\frac{3^{3/2}K_p^{1/2}P^2}{16} \hspace{0.5cm} \textbf{(B)} \hspace{0.5cm} \frac{3^{3/2}K_p^{1/2}P^2}{4} \hspace{0.5cm} \textbf{(C)} \hspace{0.5cm} \frac{K_p^{1/2}P^2}{16} \hspace{0.5cm} \textbf{(D)} \hspace{0.5cm} \frac{K_p^{1/2}P^2}{4}$$

18. Two solids dissociates as follows (2019)

$$A(s) \rightleftharpoons B(g) + C(g); K_{p_1} = x atm^2$$

$$D(s) \rightleftharpoons C(g) + E(g); K_{p_2} = yatm^2$$

The total pressure when both the solids dissociate simultaneously is:

(A)
$$2(\sqrt{x+y})$$
 atm **(B)**

$$(x + y)$$
 atm

(C)
$$\sqrt{x+y}$$
 atm (D) $x^2 + y^2$

In a chemical reaction, $A + 2B \rightleftharpoons 2C + D$, the initial concentration of B was 1.5 times of the 19. concentration of A, but the equilibrium concentrations of A and B were found to be equal. The equilibrium constant(K) for the aforesaid chemical reaction is : (2019)

(D)

20. The values of $\,K_p\,/\,K_c\,$ for the following reactions at 300K are, respectively : (2019)

(At 300K, RT =
$$24.62 \,\mathrm{dm}^2 \,\mathrm{atm} \,\mathrm{mol}^{-1}$$
)

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(A)
$$1, 4.1 \times 10^{-2} \text{dm}^{-3} \text{ atm}^{-1} \text{ mol}, 606 \text{ dm}^{6} \text{atm}^{2} \text{mol}^{-2}$$

(B) 1, 24.62 dm atm
$$\text{mol}^{-1}$$
, 606.0 dm 6 atm 2 mol $^{-2}$

(C)
$$24.62 \text{ dm}^3 \text{ atm mol}^{-1}, 606.0 \text{ dm}^6 \text{atm}^2 \text{mol}^{-2}$$

(**D**)
$$1.24.62 \text{ dm}^3 \text{ atm mol}^{-1}$$
, $1.65 \times 10^{-3} \text{dm}^{-6} \text{atm}^{-2} \text{mol}^2$

- 21. In which one of the following equilibria, $K_P \neq K_C$? (2019)
 - (A) $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$
- **(B)** $2C(s) + O_2(g) \Longrightarrow 2CO(g)$
- (C) $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$
- (D) $NO_2(g) + SO_2(g) \Longrightarrow NO(g) + SO_3(g)$

22. For the reaction,

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
,

$$\Delta H = -57.2 kJ \, mol^{-1}$$
 and $K_c = 1.7 \times 10^{16} \, .$

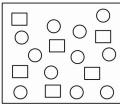
Which of the following statement is INCORRECT?

(2019)

- (A) The equilibrium constant decreases as the temperature increases
- **(B)** The addition of inert gas at constant volume will not affect the equilibrium constant
- (C) The equilibrium constant is large suggestive of reaction going to completion and so no catalyst is required.
- **(D)** The equilibrium will shift in forward direction as the pressure increases.
- 23. For the following reactions, equilibrium constants are given

$$S(s) + O_2(g) \Longrightarrow SO_2(g);$$

$$K_1 = 10^{52}$$


$$2S(g) + 3O_2(g) \rightleftharpoons 2SO_3(g); \quad K_2 = 10^{129}$$

$$K_2 = 10^{129}$$

The equilibrium constant for the reaction, $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is :

(2019)

- 10^{77} (A)
- **(B)**
- 10^{25} (C)
- 10^{181} **(D)**
- 24. In the figure shown below reactant A (represented by square) is in equilibrium with product B (represented by circle). The equilibrium constant is: (2020)

- (A)
- 4

(B)

(C)

8

(D)

1